

# WJEC (Wales) Chemistry A-level

# SP 3.5 - Determination of the Order of a Reaction

Methods and images taken from the WJEC practical handbook

This work by PMT Education is licensed under CC BY-NC-ND 4.0







## SP 3.5 - Determination of the Order of a Reaction

#### Aim

To determine the **order of reaction** for the **oxidation** of iodide ions by hydrogen peroxide in acid solution.

#### **Apparatus and Chemicals**

- Stopwatch
- 100 cm<sup>3</sup> conical flask
- Stirring rod
- 4 x 10 cm<sup>3</sup> measuring cylinder
- 5 cm<sup>3</sup> measuring cylinder
- 1 cm<sup>3</sup> measuring cylinder
- 0.1 mol dm<sup>-3</sup> H<sub>2</sub>O<sub>2</sub> solution
- 1.0 mol dm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub> solution
- 0.1 mol dm<sup>-3</sup> KI solution
- 0.005 mol dm<sup>-3</sup> Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution
- Starch solution

#### **Safety Considerations**

- $\star$  H<sub>2</sub>O<sub>2</sub> solution harmful, oxidising
- ★  $H_2SO_4$  solution irritant



#### Planning

1. Decide what volumes of  $H_2O_2$  solution and deionised water you will mix together to get at least 5 different concentrations of  $H_2O_2$ . The total volume must not exceed 5 cm<sup>3</sup>.

🕟 www.pmt.education





### Method

- 1. Prepare the reaction mixture by adding the following reagents to a 100 cm<sup>3</sup> conical flask:
  - 10.0 cm<sup>3</sup>  $H_2SO_4$  solution
  - $10.0 \text{ cm}^3 \text{ Na}_2 \text{S}_2 \text{O}_3$  solution
- 1.0 cm<sup>3</sup> starch solution
- 9.0 cm<sup>3</sup> deionised water
- 15.0 cm<sup>3</sup> KI solution 2. Be ready with the stopwatch. Rapidly add 5.0 cm<sup>3</sup> of  $H_2O_2$  solution to the reaction mixture and simultaneously start the stopwatch. Ensure the reaction mixture is thoroughly mixed.
  - 3. Stop the watch immediately when the blue colour appears and record the time.
- 4. Repeat steps 1 through to 3 using the other four concentrations of  $H_2O_2$  solution.
- 5. Calculate the rate of reaction for each experiment.
- 6. Plot a graph of rate of reaction against  $[H_2O_2]$  solution and use this to calculate the order of reaction with respect to [H<sub>2</sub>O<sub>2</sub>].

